Skip to main content
Log in

Auditory fovea and Doppler shift compensation: adaptations for flutter detection in echolocating bats using CF-FM signals

  • Review
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

Rhythmical modulations in insect echoes caused by the moving wings of fluttering insects are behaviourally relevant information for bats emitting CF-FM signals with a high duty cycle. Transmitter and receiver of the echolocation system in flutter detecting foragers are especially adapted for the processing of flutter information. The adaptations of the transmitter are indicated by a flutter induced increase in duty cycle, and by Doppler shift compensation (DSC) that keeps the carrier frequency of the insect echoes near a reference frequency. An adaptation of the receiver is the auditory fovea on the basilar membrane, a highly expanded frequency representation centred to the reference frequency. The afferent projections from the fovea lead to foveal areas with an overrepresentation of sharply tuned neurons with best frequencies near the reference frequency throughout the entire auditory pathway. These foveal neurons are very sensitive to stimuli with natural and simulated flutter information. The frequency range of the foveal areas with their flutter processing neurons overlaps exactly with the frequency range where DS compensating bats most likely receive echoes from fluttering insects. This tight match indicates that auditory fovea and DSC are adaptations for the detection and evaluation of insects flying in clutter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

BM:

Basilar membrane

CF:

Constant frequency

CM:

Cochlear microphonics

DS:

Doppler shift

DSC:

Doppler shift compensation

FM:

Frequency modulated

HRP:

Horseradish peroxidase

IC:

Inferior colliculus

N1 :

Evoked potentials from auditory nerve

N4 :

Evoked potentials from IC

References

  • Airapetianz ESh, Konstantinov AI (1970, 1974) Echolocation in animals, 1st and 2nd edn (in Russian) Nauka, Leningrad. English Translation, Israel Program of Scientific Translation, Jerusalem, 1974

  • Airapetianz ESh, Vasiliev AG (1970) The characteristics of the evoked responses in the auditory system of bats to ultrasonic stimuli of different fill frequency. Sechenov Physiol J 56:1721–1730 (in Russian)

    Google Scholar 

  • Airapetianz ESh, Vasiliev AG (1971) On neurophysiological mechanism of the echolocating apparatus in bats (frequency parameters). Int J Neurosci 1:279–286

    Article  Google Scholar 

  • Aldridge HDJN, Rautenbach LL (1987) Morphology, echolocation and resource partitioning in insectivorous bats. J Anim Ecol 56:763–778

    Article  Google Scholar 

  • Bell GP, Fenton MB (1984) The use of Doppler-shifted echoes as a flutter detection and clutter rejection system: the echolocation and feeding behavior of Hipposideros ruber. Behav Ecol Sociobiol 15:109–114

    Article  Google Scholar 

  • Bruns V (1976a) Peripheral auditory tuning for fine frequency analysis by the CF-FM bat, Rhinolophus ferrumequinum. I. Mechanical specializations of the cochlea. J Comp Physiol 106:77–86

    Article  Google Scholar 

  • Bruns V (1976b) Peripheral auditory tuning for fine frequency analysis of the CF-FM bat, Rhinolophus ferrumequinum. II. Frequency mapping in the cochlea. J Comp Physiol 106:87–97

    Article  Google Scholar 

  • Bruns V (1980) Basilar membrane and its anchoring system in the cochlea of the Greater Horseshoe bat. Anat Embryol 161:29–50

    Article  PubMed  CAS  Google Scholar 

  • Bruns V, Schmieszek E (1980) Cochlear innervation in the Greater Horseshoe bat: demonstration of an acoustic foyea. Hearing Res 3:27–43

    Article  CAS  Google Scholar 

  • Covey E, Casseday JH (1995) The lower brainstem auditory pathways. In: Popper AN, Fay RR (eds) Hearing by bats. Springer handbook of auditory research. Springer, Berlin, pp 235–295

    Google Scholar 

  • Dannhof BJ, Bruns V (1991) The organ of Corti in the bat Hipposideros bicolor. Hear Res 53:253–268

    Article  PubMed  CAS  Google Scholar 

  • Denzinger A, Schnitzler HU (2004) Perceptual tasks in echolocating bats. In: Ilg UJ, Bülthoff HH, Mallot HA (eds) Dynamic perception. Akademische Verlagsgesellschaft, Berlin, pp 33–38

    Google Scholar 

  • Fenton MB (1990) The foraging behaviour and ecology of animal-eating bats. Can J Zool 68:411–422

    Article  Google Scholar 

  • Fenton MB (1995) Natural history and biosonar signals. In: Popper AN, Fay RR (eds) Hearing by bats. Springer, Berlin, pp 37–86

    Google Scholar 

  • Fu ZY, Tang J, Jen PHS, Chen QC (2010) The auditory response properties of singe-on and double-on responders in the inferior colliculus of the leaf-nosed bat, Hipposideros armiger. Brain Res 1306:39–52

    Article  PubMed  CAS  Google Scholar 

  • Gaioni SJ, Riquimaroux H, Suga N (1990) Biosonar behavior of mustached bats swung on a pendulum prior to cortical ablation. J Neurophysiol 64:1801–1817

    PubMed  CAS  Google Scholar 

  • Goiti U, Aihartza JR, Garin I (2004) Diet and prey selection in the Mediterraniean horseshoe bat Rhinolophus euryale (Chiroptera, Rhinolophidae) during the pre-breeding season. Mammalia 68(4):397–402

    Article  Google Scholar 

  • Goldman LJ, Henson OW Jr (1977) Prey recognition and selection by the constant frequency bat, Pteronotus p parnellii. Behav Ecol Sociobiol 2:411–419

    Article  Google Scholar 

  • Griffin DR (1958) Listening in the dark. Yale University Press, New Haven

    Google Scholar 

  • Grinnell AD (1967) Mechanisms of overcoming interference in echolocating animals. In: Busnel RG (ed) Animal sonar systems, vol I. Laboratoire de Physiologie acoustique, Jouy-en-Josas, pp 451–481

    Google Scholar 

  • Grinnell AD (1970) Comparative auditory neurophysiology of neotropical bats employing different echolocation signals. Z Vergl Physiol 68:117–153

    Article  Google Scholar 

  • Grinnell AD, Hagiwara S (1972) Adaptations of the auditory nervous system for echolocation. Z Vergl Physiol 76:41–81

    Article  Google Scholar 

  • Gustafson Y, Schnitzler HU (1979) Echolocation and obstacle avoidance in the hipposiderid bat Asellia tridens. J Comp Physiol A 131:161–167

    Article  Google Scholar 

  • Habersetzer J, Storch G (1992) Cochlea size in extant chiroptera and middle eozene microchiropterans from Messel. Naturwissenschaften 79:462–466

    Article  Google Scholar 

  • Habersetzer J, Schuller G, Neuweiler G (1984) Foraging behavior and Doppler shift compensation in echolocating hipposiderid bats, Hipposideros bicolor and Hipposideros speoris. J Comp Physiol 155:559–567

    Article  Google Scholar 

  • Heilmann U (1984) Das Frequenzunterscheidungsvermögen bei der Großen Hufeisennase, Rhinolophus ferrumequinum. Thesis, University Tübingen

  • Henson MM (1978) The basilar membrane of the bat, Pteronotus p. parnellii. Am J Anat 153:143–158

    Article  PubMed  CAS  Google Scholar 

  • Henson MM, Henson OW Jr (1988) Tension fibroblasts and the connective tissue matrix of the spiral ligament. Hear Res 35:237–258

    Article  PubMed  CAS  Google Scholar 

  • Henson MM, Henson OW Jr (1991) Specializations for sharp tuning in the mustached bat: the tectorial membrane and the spiral limbus. Hear Res 35:237–258

    Article  Google Scholar 

  • Henson MM, Henson OW Jr, Goldman LJ (1977) The perilymphatic spaces in the cochlea of the bat, Pteronotus p. parnellii (Gray). Anim Rec 187:767

    Google Scholar 

  • Henson OW Jr, Henson MM, Kobler JB, Pollak GD (1980) The constant frequency component of the biosonar signals of the bat, Pteronotus parnellii. In: Busnel RG, Fish JF (eds) Animal sonar systems. Plenum Press, New York, pp 913–916

    Google Scholar 

  • Henson OW Jr, Pollak GD, Kobler JB, Henson MM, Goldman LJ (1982) Cochlear microphonic potentials elicited by biosonar signals in flying bats, Pteronotus p. parnellii. Hearing Res 7:127–147

    Article  Google Scholar 

  • Henson OW Jr, Schuller G, Vater M (1985) A comparative study of the physiological properties of the inner ear in Doppler shift compensating bats (Rhinolophus rouxi and Pteronotus parnellii). J Comp Physiol A 157:587–597

    Article  PubMed  Google Scholar 

  • Henson OW Jr, Bishop AL, Keating AW, Kobler JB, Henson MM, Wilson BS, Hansen R (1987) Bisonar imaging of insects by Pteronotus p. parnellii, the mustached bat. Nat Geogr Res 3:82–101

    Google Scholar 

  • Hiryu S, Katsura K, Lin LK, Riquimaroux H, Watanabe Y (2005) Doppler-shift compensation in the Taiwanese leaf-nosed bat (Hipposideros terasensis) recorded with a telemetry microphone system during flight. J Acoust Soc Am 118:3927–3933

    Article  PubMed  Google Scholar 

  • Hiryu S, Shiori Y, Hosokawa T, Riquimaroux H, Watananbe Y (2008) On-board telemetry of emitted sound from free-flying bats: compensation for velocity and distance stabilizes echo frequency and amplitude. J Comp Physiol 194:841–851

    Article  Google Scholar 

  • Jen PH, Kamada T (1982) Analysis of orientation signals emitted by the CF-FM bat, Pteronotus p. parnellii and the FM bat, Eptesicus fuscus during avoidance of moving and stationary obstacle. J Comp Physiol A 148:389–398

    Article  Google Scholar 

  • Jen PH, Suthers RA (1982) Responses of inferior colliculus neurons to acoustic stimuli in certain FM and CF-FM paleotropical bats. J Comp Physiol 146:423–434

    Article  Google Scholar 

  • Jin L, Feng J, Sun K, Liu Y, Wu L, Li Z, Zhang X (2005) Foraging strategies in the greater horseshoe bat (Rhinolophus ferrumequinum) on Lepidoptera in summer. Chin Sci Bull 50(14):1477–1482

    Article  Google Scholar 

  • Jones G (1990) Prey selection by the greater horseshoe bat (Rhinolophus ferrumequinum): optimal foraging by echolocation? J Anim Ecol 59:587–602

    Article  Google Scholar 

  • Jones G, Rayner JMV (1989) Foraging behavior and echolocation of wild horseshoe bats Rhinolophus ferrumequinum and R hipposideros (Chiroptera, Rhinolophidae). Behav Ecol Sociobiol 25:183–191

    Article  Google Scholar 

  • Keating AW, Henson OW, Henson MM, Lancaster WC, Xie DH (1994) Doppler-shift compensation by the mustached bat: quantitative data. J Exp Biol 188:115–129

    PubMed  CAS  Google Scholar 

  • Kober R (1988) Echoes of fluttering insects. In: Nachtigall PE, Moore PWB (eds) Animal sonar processes and performance. Plenum Press, New York, pp 477–481

    Google Scholar 

  • Kober R, Schnitzler HU (1990) Information in sonar echoes of fluttering insects available for echolocating bats. J Acoust Soc Am 87:882–896

    Article  Google Scholar 

  • Kobler JB, Wilson BS, Henson OW Jr, Bishop AL (1985) Echo intensity compensation by echolocating bats. Hear Res 20:99–108

    Article  PubMed  CAS  Google Scholar 

  • Konstantinov AI, Makarov AK, Sokolov BV (1978) Dopplerpulse sonar system in Rhinolophus ferrumequinum. Kenya National Acad. For Advancement of Arts and Science, pp 155–163

  • Kössl M, Vater M (1985a) Evoked acoustic emissions and cochlear microphonics in the mustache bat Pteronotus p. parnellii. Hear Res 19:157–170

    Article  PubMed  Google Scholar 

  • Kössl M, Vater M (1985b) The cochlear frequency map of the mustached bat, Pteronotus parnellii. J Comp Physiol A 157:687–697

    Article  PubMed  Google Scholar 

  • Kössl M, Vater M (1995) Cochlear structure and function in bats. In: Popper AN, Fay RR (eds) Hearing by bats. Springer, Berlin, pp 191–234

    Google Scholar 

  • Lancaster WC, Keating AW, Henson OW Jr (1992) Ultrasonic vocalizations of flying bats monitored by radiotelemetry. J Exp Biol 173:43–58

    PubMed  CAS  Google Scholar 

  • Link A, Marimuthu G, Neuweiler G (1986) Movement as a specific stimulus for prey catching behaviour in rhinolophid and hipposiderid bats. J Comp Physiol A 159:403–413

    Article  Google Scholar 

  • Long GR, Schnitzler HU (1975) Behavioural audiograms from the bat, Rhinolophus ferrumequinum. J Comp Physiol 100:211–219

    Article  Google Scholar 

  • Metzner W (1993) An audio–vocal interface in echolocating horseshoe bats. J Neurosci 13:1899–1915

    PubMed  CAS  Google Scholar 

  • Möller J, Neuweiler G, Zöller H (1978) Response characteristics of inferior colliculus neurons of the awake cf-fm bat Rhinolophus ferrumequinum. J Comp Physiol 125:217–225

    Article  Google Scholar 

  • Neuweiler G (1970) Neurophysiologische Untersuchungen zum Echoortungssystem der Grossen Hufeisennase Rhinolophus ferrumequinum. Z Vergl Physiol 67:273–306

    Article  Google Scholar 

  • Neuweiler G (1980) Auditory processing of echoes: peripheral processing. In: Busnel RG, Fish JF (eds) Animal sonar systems. Plenum Press, New York, pp 519–548

    Google Scholar 

  • Neuweiler G (1983) Echolocation and adaptivity to ecological constraints. In: Huber F, Markl H (eds) Neuroethology and behavioural physiology. Springer, Berlin, pp 280–302

    Google Scholar 

  • Neuweiler G (1984) Foraging, echolocation and audition in bats. Naturwissenschaften 71:446–455

    Article  Google Scholar 

  • Neuweiler G (1989) Foraging ecology and audition in echolocating bats. Trends Ecol Evol 4:160–166

    Article  PubMed  CAS  Google Scholar 

  • Neuweiler G (1990) Auditory adaptations for prey capture in echolocating bats. Physiol Rev 70:615–641

    PubMed  CAS  Google Scholar 

  • Neuweiler G (1993) Biologie der Fledermäuse. Thieme Verlag, Stuttgart

    Google Scholar 

  • Neuweiler G (2000) Biology of bats. Oxford University Press, New York

    Google Scholar 

  • Neuweiler G (2003) Evolutionary aspects of bat echolocation. J Comp Physiol A 189:245–256

    CAS  Google Scholar 

  • Neuweiler G, Fenton MB (1988) Behaviour and foraging ecology of echolocating bats. In: Nachtigall PE, Moore PWB (eds) Animal sonar processes and performance. Plenum Press, New York, pp 535–549

    Google Scholar 

  • Neuweiler G, Schmidt S (1993) Audition in echolocating bats. Curr Opin Neurobiol 3:563–569

    Article  PubMed  CAS  Google Scholar 

  • Neuweiler G, Vater M (1977) Response patterns to pure tones of cochlear nucleus units in the CF-FM bat, Rhinolophus ferrumequinum. J Comp Physiol 115:119–133

    Article  Google Scholar 

  • Neuweiler G, Schuller G, Schnitzler HU (1971) On- and off-responses in the inferior colliculus of the Greater Horseshoe bat to pure tones. Z vergl Physiol 74:57–63

    Article  Google Scholar 

  • Neuweiler G, Bruns V, Schuller G (1980) Ears adapted for detection of motion, or how echolocating bats have exploited the capacities of the mammalian auditory system. J Acoust Soc Am 68:741–753

    Article  Google Scholar 

  • Neuweiler G, Singh S, Sripathi K (1984) Audiograms of a South Indian bat community. J Comp Physiol A 154:133–142

    Article  Google Scholar 

  • Neuweiler G, Metzner W, Heilmann U, Rübsamen R, Eckrich M, Costa HH (1987) Foraging behaviour and echolocation in the rufous horseshoe bat of Sri Lanka. Behav Ecol Sociobiol 20:53–67

    Article  Google Scholar 

  • O’Neill WE (1995) The bat auditory cortex. In: Popper AN, Fay RR (eds) Hearing by bats. Springer, Berlin, pp 416–480

    Google Scholar 

  • Ostwald J (1980) The functional organisation of the auditory cortex in the CF-FM bat Rhinolophus ferrumequinum. In: Busnel RG, Fish JF (eds) Animal Sonar Systems. Plenum Press, New York, pp 953–955

    Google Scholar 

  • Ostwald J (1984) Tonotopical organization and pure tone response characteristics of single units in the auditory cortex of the Greater Horseshoe bat. J Comp Physiol A 155:821–834

    Article  Google Scholar 

  • Ostwald J (1988) Encoding of natural insect echoes and sinusoidally modulated stimuli by neurons in the auditory cortex of the Greater Horseshoe bat, Rhinolophus ferrumequinum. In: Nachtigal PE, Moore PWB (eds) Animal Sonar processes and performance. Plenum Press, New York, pp 483–487

  • Ostwald J, Schnitzler HU, Schuller G (1988) Target discrimination and target classification in echolocating bats. In: Nachtigall PE, Moore PWB (eds) Animal sonar processes and performance. Plenum Press, New York, pp 413–434

    Google Scholar 

  • Peters A (1987) Analyse der Frequenzrepräsentation im Innenohr der echoortenden Fledermaus Hipposideros lankadiva. Diploma Thesis, University Munich

  • Pollak GD, Bodenhamer RD (1981) Specialized characteristics of single units in inferior colliculus of mustached bats: frequency representation, tuning and discharge patterns. J Neurophysiol 46:605–620

    PubMed  CAS  Google Scholar 

  • Pollak GD, Park TJ (1995) The inferior colliculus. In: Popper AN, Fay RR (eds) Hearing by bats. Springer, Berlin, pp 296–367

    Google Scholar 

  • Pollak GD, Schuller G (1981) Tonotopic organisation and encoding features of single units in inferior colliculus of horseshoe bats: functional implications for prey identification. J Neurophysiol 45(2):208–226

    PubMed  CAS  Google Scholar 

  • Pollak GD, Henson OW Jr, Novick A (1972) Cochlear microphonic audiograms in the “pure” tone bat, Chilonycteris parnellii. Science 176:66–68

    Article  PubMed  CAS  Google Scholar 

  • Pye JD (1967) Discussion of the paper of Griffith. In: Busnel RG (ed) Animal sonar systems, vol II. Laboratoire de Physiologie acoustique, Jouy-en-Josas, pp 1121–1136

  • Pye JD (1980) Echolocation signals and echoes in air. In: Busnel RG, Fish JF (eds) Animal sonar systems. Plenum Press, New York, pp 309–353

    Google Scholar 

  • Radke-Schuller S, Schuller G (1995) Auditory cortex of the rufous horseshoe bat: 1 Physiological response properties to acoustic stimuli and vocalizations and the topographical distribution of neurons. Eur J Neurosci 7:570–591

    Article  Google Scholar 

  • Reimer K (1987) Coding of sinusoidally modulated acoustic stimuli in the inferior colliculus of the rufous horseshoe bat, Rhinolophus rouxi. J Comp Physiol 161:305–313

    Article  CAS  Google Scholar 

  • Roverud RC, Nitsche V, Neuweiler G (1991) Discrimination of wingbeat motion by bats, correlated with echolocation sound pattern. J Comp Physiol A 168:259–263

    Article  PubMed  CAS  Google Scholar 

  • Rübsamen R, Neuweiler G, Sripathi K (1988) Comparative collicular tonotopy in two bat species adapted to movement detection, Hipposideros speoris and Megaderma lyra. J Comp Physiol 163:271–285

    Article  Google Scholar 

  • Salsamendi E, Garin I, Almenar D, Goiti U, Napal M, Aihartza J (2008) Diet and prey selection in Mehelyi’s horseshoe bat Rhinolophus mehelyi (Chiroptera, Rhinolophidae) in the south-western Iberian Peninsula. Acta Chiropterologica 10(2):279–286

    Article  Google Scholar 

  • Schlegel P (1977) Directional coding by brainstem units of the CF-FM bat, Rhinolophus ferrumequinum. J Comp Physiol 118:327–352

    Article  Google Scholar 

  • Schnitzler HU (1967) Kompensation von Dopplereffekten bei Hufeisen-Fledermäusen. Naturwissenschaften 54:523–524

    Article  PubMed  CAS  Google Scholar 

  • Schnitzler H-U (1968) Die Ultraschall-Ortungslaute der Hufeisen-Fledermäuse (Chiroptera - Rhinolophidae) in verschiedenen Orientierungs-Situationen. Z Vergl Physiol 57:376–408

    Article  Google Scholar 

  • Schnitzler H-U (1970a) Comparison of echolocation behavior in Rhinolophus ferrumequinum and Chilonycteris rubiginosa. Bijdr Dierk 40:77–80

    Google Scholar 

  • Schnitzler H-U (1970b) Echoortung bei der Fledermaus Chilonycteris rubiginosa. Z Vergl Physiol 68:25–39

    Article  Google Scholar 

  • Schnitzler HU (1973) Control of Doppler shift compensation in the Greater Horseshoe Bat, Rhinolophus ferrumequinum. J Comp Physiol 82:79–92

    Article  Google Scholar 

  • Schnitzler HU (1978) Die Detektion von Bewegungen durch Echoortung bei Fledermäusen. Verh Dtsch Zool Ges 71:16–33

    Google Scholar 

  • Schnitzler HU (1987) Echoes of fluttering insects: information for echolocating bats. In: Fenton MB, Racey P, Rayner JMV (eds) Recent advances in the study of bats. Cambridge University Press, Cambridge

    Google Scholar 

  • Schnitzler HU, Flieger E (1983) Detection of oscillating target movements by echolocation in the greater horseshoe bat. J Comp Physiol A 153:385–391

    Article  Google Scholar 

  • Schnitzler HU, Henson OW Jr (1980) Performance of airborne animal sonar systems. I. Microchiroptera. In: Busnel RG, Fish JF (eds) Animal sonar systems. Plenum Press, NewYork, pp 109–181

    Google Scholar 

  • Schnitzler HU, Kalko EKV (2001) Echolocation by insect-eating bats. Bioscience 51:557–569

    Article  Google Scholar 

  • Schnitzler HU, Ostwald J (1983) Adaptation for the detection of fluttering insects by echolocation in horseshoe bats. In: Ewert JP, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 801–827

    Google Scholar 

  • Schnitzler HU, Schuller G, Neuweiler G (1971) Antworten des Colliculus inferior der Fledermaus Rhinolophus euryale auf tonale Reizung. Naturwissenschaften 58:627–628

    Article  Google Scholar 

  • Schnitzler H-U, Suga N, Simmons JA (1976) Peripheral auditory tuning for fine frequency analysis in the CF-FM bat, Rhinolophusferrumequinum. J Comp Physiol 106:99–110

    Article  Google Scholar 

  • Schnitzler HU, Menne D, Kober R, Heblich K (1983) The acoustical image of fluttering insects in echolocating bats. In: Huber F, Markl H (eds) Neuroethology and behavioral physiology. Springer, Berlin, pp 235–250

    Google Scholar 

  • Schnitzler HU, Hackbarth H, Heilmann U, Herbert H (1985) Echolocation behavior of Rufous Horseshoe bats hunting for insects in flycatcher-style. J Comp Physiol 157:39–46

    Article  Google Scholar 

  • Schnitzler HU, Moss CF, Denzinger A (2003) From spatial orientation to food acquisition in echolocating bats. Trends Ecol Evol 18:386–394

    Article  Google Scholar 

  • Schuller G (1972) Echoortung bei Rhinolophus ferrumequinum mit frequenzmodulierten Lauten. J Comp Physiol 77:306–331

    Article  Google Scholar 

  • Schuller G (1979) Coding of small sinusoidal frequency and amplitude modulations in the inferior colliculus of the CF-FM bat, Rhinolophus ferrumequinum. Exp Brain Res 34:117–132

    Article  PubMed  CAS  Google Scholar 

  • Schuller G (1980) Hearing characteristics and Doppler compensation in South Indian CF-FM bats. J Comp Physiol 139:349–356

    Article  Google Scholar 

  • Schuller G (1984) Natural ultrasonic echoes from wing beating insects are encoded by collicular neurons in the CF-FM bat, Rhinolophus ferrumequinum. J Comp Physiol 155:121–128

    Article  Google Scholar 

  • Schuller G, Moss C (2004) Vocal control and acoustically guided behaviour in bats. In: Thomas JA, Moss CF, Vater M (eds) Echolocation in bats and dolphins. University of Chicago Press, Chicago, pp 3–16

  • Schuller G, Pollak GD (1979) Disproportionate frequency representation in the inferior colliculus of horseshoe bats: evidence for an acoustic fovea. J Comp Physiol 132:47–54

    Article  Google Scholar 

  • Schuller G, Neuweiler G, Schnitzler HU (1971) Collicular responses to the frequency modulated final part of echolocation sounds in Rhinolophus ferrumequinum. Z Vergl Physiol 74:153–155

    Article  Google Scholar 

  • Schuller G, Beuter K, Schnitzler HU (1974) Response to frequency shifted artificial echoes in the bat Rhinolophus ferrumequinum. J Comp Physiol A 89:275–286

    Article  Google Scholar 

  • Schuller G, Beuter K, Rübsamen R (1975) Dynamic properties of the compensation system for Doppler shifts in the bat, Rhinolophus ferrumequinum. J Comp Physiol 97:113–125

    Article  Google Scholar 

  • Schuller G, O’Neill WE, Radtke-Schuller S (1991) Facilitation and delay sensitivity of auditory cortex neurons in CF-FM bats Rhinolophus rouxi and Pteronotus p. parnellii. Eur J Neurosci 3:1165–1181

    Article  PubMed  Google Scholar 

  • Siemers BM, Ivanova T (2004) Ground gleaning in horseshoe bats: comparative evidence from Rhinolophus blasii, R. euryale and R. mehelyi. Behav Ecol Sociobiol 56:464–471

    Google Scholar 

  • Simmons JA (1974) Response of the Doppler echolocation system in the bat, Rhinolophus ferrumequinum. J Acoust Soc Am 56:672–682

    Article  PubMed  CAS  Google Scholar 

  • Smotherman M, Metzner W (2003) Fine control of call frequency by horseshoe bats. J Comp Physiol A 189:435–446

    Article  CAS  Google Scholar 

  • Suga N (1973) Feature extraction in the auditory system of bats: In: Moeller AR (ed) Basic mechanisms in hearing. Academic Press, New York, pp 675–744

  • Suga N (1984) The extent to which biosonar information is represented in the bat auditory cortex. In: Edelman GM, Gall WE, Cowan WM (eds) Dynamic aspects of neocortical function. Wiley, New York, pp 315–373

    Google Scholar 

  • Suga N (1990) Biosonar and neural computation in bats. Sci Am 262(6):60–68

    Article  PubMed  CAS  Google Scholar 

  • Suga N (1994) Multi-function theory for cortical processing of auditory information: implication of single-unit and lesion data for future research. J Comp Physiol 175:135–144

    Article  CAS  Google Scholar 

  • Suga N, Jen PH (1976) Disproportionate tonotopic representation for processing CF-FM sonar signals in the mustache bat auditory cortex. Science 194:542–544

    Article  PubMed  CAS  Google Scholar 

  • Suga N, Jen PH-S (1977) Further studies on the peripheral auditory system of ‘CF-FM’ bats specialized for fine frequency analysis of Doppler-shifted echoes. J Exp Biol 69:207–232

    PubMed  CAS  Google Scholar 

  • Suga N, O’Neill W (1980) Auditory processing of echoes: representation of acoustic information from the environment in the bat cerebral cortex. In: Busnell RG, Fish JF (eds) Animal sonar systems. Plenum Press, New York, pp 589–615

    Google Scholar 

  • Suga N, Simmons JA, Shimozawa T (1974) Neurophysiological studies on echolocation systems in awake bats producing CF-FM orientation sounds. J Exp Biol 61:379–399

    PubMed  CAS  Google Scholar 

  • Suga N, Simmons JA, Jen PH-S (1975) Peripheral specializations in fine frequency analysis of Doppler-shifted echoes in the auditory system of the CF-FM bat Pteronotus parnellii. J Exp Biol 63:161–192

    PubMed  CAS  Google Scholar 

  • Suga N, Neuweiler G, Möller J (1976) Peripheral auditory tuning for fine frequency analysis by the CF-FM bat, Rhinolophus ferrumequinum. IV. Properties of peripheral auditory neurons. J Comp Physiol 106:111–125

    Article  Google Scholar 

  • Suga N, Niwa H, Taniguchi I (1983) Representation of biosonar information in the auditory cortex of the mustached bat, with emphasis on representation of target velocity information. In: Ewert JP, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 829–876

    Google Scholar 

  • Suga N, Niwa H, Taniguchi I, Margoliash D (1987) The personalized auditory cortex of the mustached bat: adaptation for echolocation. J Neurophysiol 58:643–654

    PubMed  CAS  Google Scholar 

  • Taniguchi I (1985) Echolocation sounds and hearing of the greater Japanese horseshoe bat (Rhinolophus ferrumequinum nippon). J Comp Physiol A 156:185–188

    Article  Google Scholar 

  • Tian B, Schnitzler HU (1997) Echolocation signals of the Greater Horseshoe bat (Rhinolophus ferrumequinum) in transfer flight and during landing. J Acoust Soc Am 101:2347–2364

    Article  PubMed  CAS  Google Scholar 

  • Trappe M, Schnitzler HU (1982) Doppler-shift compensation in insect-catching horseshoe bats. Naturwissenschaften 69:193–194

    Article  Google Scholar 

  • Vasiliev AG (1971) Characteristics of electric responses of the cochlear nuclei in Vespertilionidae and Rhinolophidae to ultra-sonic stimuli with different fill frequency. Neirophysiologica 4:379–385 (in Russian)

    Google Scholar 

  • Vasiliev AG (1975) Characteristics of unit responses of the cochlear nuclei of bats Rhinolophidae to single and paired ultrasonic stimuli. Neurophysiology 7:195–199 English translation

    Article  Google Scholar 

  • Vasiliev AG (1976) Characteristics of the responses of neurons in the superior olive of bats in response to single and paired ultrasonic stimuli. Neirofiziologiya 8:30–38 (in Russian)

    Google Scholar 

  • Vasiliev AG, Andreeva NG (1971) Characteristics of the electric responses of medial geniculate body of Vespertilionidae and Rhinolophidae to ultrasonic stimuli with different fill frequency. Neirofiziologiya 3:138–144 (in Russian)

    Google Scholar 

  • Vasiliev AG, Timoshenko TE (1973) Characteristics of electric responses of superior olivary complex in Vespertilionidae and Rhinolophidae bats to ultrasonic stimuli with different fill frequency. Neirofiziologiya 5:33–39 (in Russian)

    Google Scholar 

  • Vater M (1987) Narrow-band frequency analysis in bats. In: Fenton MB, Racey P, Rayner JMV (eds) Recent advances in the study of bats. Cambridge University Press, Cambridge, pp 200–225

    Google Scholar 

  • Vater M (1988) Cochlear physiology and anatomy in bats. In: Nachtigall PE, Moore PWB (eds) Animal sonar. Plenum Press, New York, pp 225–242

    Google Scholar 

  • Vater M (1998) Adaptations of the auditory periphery of bats for echolocation. In: Kunz TH, Racey PA (eds) Bat biology and conservation. Smithonian Institution Press, Washington, DC, pp 231–247

    Google Scholar 

  • Vater M, Kössl M (2004) The ears of whales and bats. In: Thomas JA, Moss CF, Vater M (eds) Echolocation in bats and dolphins. University of Chicago Press, Chicago, pp 89–99

    Google Scholar 

  • Vater M, Lenoir M (1992) Ultrastructure of the horseshoe bat’s organ of Corti. I. Scanning electron microscopy. J Comp Neurol 318:367–379

    Article  PubMed  CAS  Google Scholar 

  • Vater M, Feng AS, Betz M (1985) An HRP-study of the frequency-place map of the horseshoe bat cochlea: morphological correlates of the sharp tuning to a narrow frequency band. J Comp Physiol 157:671–686

    Article  CAS  Google Scholar 

  • Vater M, Lenoir M, Pujol R (1992) Ultrastructure of the horseshoe bat’s organ of Corti. II. Transmission electron microscopy. J Comp Neurol 318:380–391

    Article  PubMed  CAS  Google Scholar 

  • Vogler B, Neuweiler G (1983) Echolocation in the noctule (Nyctalus noctula) and horseshoe bat (Rhinolophus ferrumequinum). J Comp Physiol A 152:421–432

    Article  Google Scholar 

  • von der Emde G, Menne D (1989) Discrimination of insect wingbeat-frequencies by the bat Rhinolophus ferrumequinum. J Comp Physiol A 164:663–671

    Article  Google Scholar 

  • von der Emde G, Schnitzler HU (1986) Fluttering target detection in hipposiderid bats. J Comp Physiol A 159:765–772

    Article  Google Scholar 

  • von der Emde G, Schnitzler HU (1990) Classification of insects by echolocating greater horseshoe bats. J Comp Physiol A 167:423–430

    Google Scholar 

  • Wenstrup JJ (1995) The auditory thalamus in bats. In: Popper AN, Fay RR (eds) Hearing by bats. Springer, Berlin, pp 368–415

    Google Scholar 

  • Zook JM, Leake PA (1989) Connections and frequency representation in the auditory brainstem of the mustache bat, Pteronotus parnellii. J Comp Neurol 290:243–261

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Ulrich Schnitzler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnitzler, HU., Denzinger, A. Auditory fovea and Doppler shift compensation: adaptations for flutter detection in echolocating bats using CF-FM signals. J Comp Physiol A 197, 541–559 (2011). https://doi.org/10.1007/s00359-010-0569-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00359-010-0569-6

Keywords

Navigation